Cours de mathématiques P.S.I.*

D'après les cours de M. Guillaumie

Henriet Quentin

Dualité

Dans ce chapitre, \mathbb{K} désigne \mathbb{R} ou \mathbb{C} , et E un \mathbb{K} -espace vectoriel.

1. Hyperplan

Définition:

Soit H un sous-espace vectoriel de E. On dit que H est un hyperplan de E dès lors que H admet un supplémentaire de dimension 1 (droite vectorielle).

Proposition:

Soit H un hyperplan de E. Si $e \notin H$, alors $E = H \oplus \text{Vect}(e)$.

2. Formes linéaires d'un espace vectoriel

Définition :

On appelle forme linéaire de E toute application linéaire de E dans \mathbb{K} .

L'ensemble des formes linéaires de E est appelé espace dual de E, noté $E^* = \mathcal{L}(E, \mathbb{K})$.

Propriété :

 E^* est un \mathbb{K} -espace vectoriel, et si E est de dimension n, E^* est de dimension n.

Exemples:

- 1. La trace est une forme linéaire de $\mathcal{M}_n(\mathbb{K})$.
- 2. Si I est un intervalle quelconque de \mathbb{R} non réduit à un point, $L_1(E)$ est un \mathbb{K} -espace vectoriel, et $f \in L_1(E) \mapsto \int_I f$ est une forme linéaire de $L_1(I)$.
- 3. Soit $a \in \mathbb{K}$. $\varphi : P \in \mathbb{K}[X] \mapsto P(a)$ est une forme linéaire de $\mathbb{K}[X]$.
- 4. Soit E tel que dim(E)=n, on note $\mathcal{B}=(e_1,\ldots,e_n)$ une base de E. Soit $\varphi: E \to \mathbb{K}$.

$$\varphi \in E^* \iff \exists (a_1, \dots, a_n) \in \mathbb{K}^n \text{ tel que } \forall x \in E \text{ tel que } x = \sum_{i=1}^n x_i e_i, \text{ on a } \varphi(x) = \sum_{i=1}^n a_i x_i.$$

Proposition:

Soit
$$\varphi \in E^*$$
, $\varphi \neq 0$. Alors $\operatorname{rg}(\varphi) = 1$.

Preuve :

 $\varphi \in E^*$, donc rg $(\varphi) \le 1$. Or rg $(\varphi) \ne 0$, sinon φ serait nulle. Donc rg $(\varphi) = 1$.

Corollaire :

Soit $\varphi \in E^*$, $\varphi \neq 0$. φ est surjective, en particulier $\exists e \in E$ tel que $\varphi(e) = 1$.

Théorème

Soit
$$\varphi \in E^*$$
, $\varphi \neq 0$. Alors $\operatorname{Ker}(\varphi)$ est un hyperplan de E .

Exemple :

 $\operatorname{Ker}(\operatorname{tr}) = \{A \in \mathcal{M}_n(\mathbb{K}) \text{ tel que } \operatorname{tr}(A) = 0\} \text{ est un hyperplan de } \mathcal{M}_n(\mathbb{K}).$

Théorème :

Soit H un hyperplan de E. $\exists \varphi \in E^*$, $\varphi \neq 0$, tel que $H = \text{Ker}(\varphi)$.

Si il existe une autre forme linéaire μ de E telle que $H = \text{Ker}(\mu)$, alors $\exists \alpha \in \mathbb{K}^*$ tel que $\mu = \alpha \varphi$.

Preuve :

 $\exists e \in E \setminus \{0\}$ tel que $e = H \oplus \text{Vect}(e)$. Soit $x \in E$, $\exists ! (h_x, \lambda_x) \in H \times \mathbb{K}$ tel que $x = h_x + \lambda_x e$.

Pour tout $x \in E$, ce λ_x est unique. Soit alors $\varphi : x \mapsto \lambda_x$, application de E dans \mathbb{K} .

Soit $(x, y) \in E^2$, et $(\alpha, \beta) \in \mathbb{K}^2$. On a $x = h_x + \lambda_x e$, $y = h_y + \lambda_y e$, (h_x, λ_x) et $(h_y, \lambda_y) \in H \times \mathbb{K}$.

Par combinaison linéaire, $\alpha x + \beta y = (\alpha h_x + \beta h_y) + (\alpha \lambda_x + \beta \lambda_y)e$. Par unicité de la décomposition d'un vecteur sur $E = H \oplus \text{Vect}(e)$, on a $\lambda_{\alpha x + \beta y} = \alpha \lambda_x + \beta \lambda_y$, c'est-à-dire $\varphi(\alpha x + \beta y) = \alpha \varphi(x) + \beta \varphi(y)$. Donc $\varphi \in E^*$,

 $\text{et } \varphi \text{ n'est pas nulle } : \varphi(e) = 1. \text{ Soit } x \in E, \quad x \in \operatorname{Ker}(\varphi) \iff \varphi(x) = 0 \iff \lambda_x = 0 \iff x = h_x \in H : H = \operatorname{Ker}(\varphi).$

Soit alors $\mu \in E^* \setminus \{0\}$ tel que $H = \text{Ker}(\mu)$. Soit $x \in E$: $\exists (h_x, \lambda_x) \in H \times \mathbb{K}$ tel que $x = h_x + \lambda_x e$.

Alors $\mu(x) = \mu(h_x) + \varphi(x)\mu(e)$, or $\mu(h_x) = 0$, on a donc $\mu = \mu(e)\varphi$, et $\mu(e) \neq 0$, sinon μ serait nul.

Définition :

Soient $\varphi \in E^*$, et H un hyperplan de E tel que $H = \text{Ker}(\varphi)$. L'équation $\varphi(x) = 0$ est appelée équation de H.

Propriété :

En dimension finie, si E est de dimension n, et $\mathcal{B}=(e_1,\ldots,e_n)$ est une base de E:

$$x = (x_1, ..., x_n) \in \text{Ker}(\varphi) = H \iff \sum_{i=1}^n a_i x_i = 0$$

Définition :

L'équation $\sum_{i=1}^{n} a_i x_i = 0$ est appelée équation de l'hyperplan H dans la base \mathcal{B} . Elle est unique à un coefficient multiplicatif non nul près.

3. Bases duales

Dans ce paragraphe, E est de dimension finie n.

Proposition:

Soit $\mathcal{B}=(e_1,\ldots,e_n)$ une base de E. Soit $x\in E$. $\exists !(x_1,\ldots,x_n)\in \mathbb{K}^n$ tel que $x=\sum_{j=1}^n x_j e_j$. On note $e_j^*: x\mapsto x_j$. e_j^* est une forme linéaire de E appelée $j^{\text{ème}}$ forme linéaire coordonnée de E, associée à \mathcal{B} .

Propriété:

$$\forall x \in E, x = \sum_{j=1}^{n} e_{j}^{*}(x)e_{j}.$$

Proposition |

 $\forall (i, j) \in [1, n]^2, e_i^*(e_j) = \delta_{i, j}$: cette formule est appelée formule de Kronecker.

Théorème:

La famille ainsi construite est une base de E^* .

Définition:

Cette famille est appelée base duale de la base \mathcal{B} , elle est notée \mathcal{B}^* .

Preuve du théorème :

On sait que $\dim(E^*)=\dim(E)=n$, et $\operatorname{Card}(\mathcal{B}^*)=n$. Soit $(\alpha_1,...,\alpha_n)\in\mathbb{K}^n$ tel que $\sum_{i=1}^n\alpha_ie_i^*=0$.

Soit $j \in [1, n]$. $\sum_{i=1}^{n} \alpha_i e_i^*(e_j) = 0 \iff \sum_{i=1}^{n} \alpha_i \delta_{i,j} = 0 \iff \alpha_j = 0$: La famille construite est libre de cardinal n,

il s'agit donc d'une base de E^* .

Remarque:

Pour trouver la base duale \mathcal{B}^* d'une base \mathcal{B} de E, il suffit de déterminer les coordonnées d'un vecteur quelconque de E dans la base \mathcal{B} . On a alors $x = \sum_{i=1}^{n} e_i^*(x)e_i$.

Proposition:

Les formules de Kronecker caractérisent la base duale :

$$\text{Si } \exists (\,\varphi_1,\ldots,\varphi_n) \in (E^{\,*})^n \text{ tel que } \forall (i\,,j) \in \llbracket \,1\,,n\, \rrbracket^2 \,, \ \, \varphi_i(e_j) = \delta_{i,\,j}, \ \, \text{alors } (\,\varphi_1,\ldots,\varphi_n) \text{ est la base duale de la base } \, \mathcal{B}.$$

Preuve :

Soit
$$(\varphi_1, ..., \varphi_n) \in (E^*)^n$$
 tel que $\forall (i, j) \in [1, n]^2$, $\varphi_i(e_j) = \delta_{i, j}$. Soit $x \in E$, on sait que $x = \sum_{i=1}^n e_i^*(x)e_i$.

Soit
$$j \in [1, n]$$
, $\varphi_j(x) = \sum_{i=1}^n e_i^*(x) \varphi_j(e_i) = e_j^*$.

Exemple :

$$E = \mathbb{K}_n[X]$$
. Soient $a \in \mathbb{K}$, $P_k(X) = (X - a)^k$, $k \in [1, n]$. (P_k) est une base \mathcal{B} de $\mathbb{K}_n[X]$. Soit $P \in \mathbb{K}[X]$.

D'après la formule de Taylor pour les polynômes,
$$P(X) = \sum_{k=0}^{n} \frac{P^{(k)}(a)}{k!} (X-a)^k = \sum_{k=0}^{n} \frac{P^{(k)}(a)}{k!} P_k(X)$$
.

On pose
$$\forall k \in [1, n]$$
, $e_k^* : P \mapsto \frac{P^{(k)}(a)}{k!}$. $e_k^* \in (\mathbb{K}[X])^*$, et $(e_0^*, ..., e_n^*)$ est la base duale de la base \mathcal{B} .

Exemple

$$E = \mathbb{K}_n[X]. \text{ Soit } (a_0, \dots, a_n) \in \mathbb{K}^{n+1} \text{ tel que } \forall (i, j) \in \llbracket 1, n \rrbracket^2, \ i \neq j \Rightarrow a_i \neq a_j. \text{ Soit } \mathscr{L} = (L_0, \dots, L_n) \text{ la famille de polynômes de Lagrange associée à } (a_0, \dots, a_n). \mathscr{L} \text{ est une base de } \mathbb{K}_n[X]. \ \forall P \in \mathbb{K}_n[X], \ P(X) = \sum_{i=1}^n P(a_k) L_k(X).$$
 On pose $\forall k \in \llbracket 1, n \rrbracket, \ e_k^* = P(a_k). \ (e_0^*, \dots, e_n^*) \text{ est la base duale de } \mathscr{L}.$

Exemple:

$$E = \mathbb{R}^3$$
. On munit E de la base canonique \mathcal{B} . Soit $\mathcal{B}' = (e_1', e_2', e_3')$ telle que $e_1' = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$, $e_2' = \begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix}$, $e_3' = \begin{pmatrix} 3 \\ 4 \\ 6 \end{pmatrix}$.

$$\operatorname{Det}_{\mathfrak{B}}(\mathfrak{B}')=-1$$
. \mathfrak{B}' est une base de E , on cherche sa base duale \mathfrak{B}'^* . Soient $P=\mathcal{P}_{\mathfrak{B}}^{\mathfrak{B}'}$, et $v\in E$.

On note
$$X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
 les coordoonées de v dans \mathcal{B} , $X' = \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix}$ dans \mathcal{B}' .

Alors
$$X = PX' \Leftrightarrow X' = P^{-1}X$$
. $P^{-1} = -1 \begin{pmatrix} 2 & 0 & -1 \\ 0 & -3 & 2 \\ -1 & 2 & -1 \end{pmatrix}$, $\operatorname{donc} \begin{cases} e_1'^*(v) = -2x + z \\ e_2'^*(v) = 3y - 2x \\ e_3'^*(v) = x - 2y + z \end{cases}$.

4. Bases antéduales

Lemme :

Soit
$$x \in E$$
 tel que $\forall \varphi \in E^*$, $\varphi(x) = 0$. Alors $x = 0$.

Preuve :

Si
$$x \neq 0$$
, notons $e_1 = x$. On complète (e_1) en une base $\mathcal{B} = (e_1, \dots, e_n)$ de E . On introduit la base duale $\mathcal{B}^* = (e_1^*, \dots, e_n^*)$, mais alors $e_1^*(e_1) = 1 \neq 0$. Contradiction, donc $x = 0$.

Théorème :

Soit $(\varphi_1,...,\varphi_n)$ une base de E^* . Il existe une unique base de E, $\mathcal{B}=(e_1,...,e_n)$, telle que $(\varphi_1,...,\varphi_n)$ soit la base duale de la base \mathcal{B} .

Définition :

Cette base \mathcal{B} est appelée base antéduale ou préduale de la base $(\varphi_1, ..., \varphi_n)$.

Preuve du théorème :

Soit $\phi: x \in E \mapsto (\varphi_1(x), ..., \varphi_n(x)) \in \mathbb{K}^n$. Comme $\dim(E) = \dim(\mathbb{K}^n)$, il suffit de montrer que ϕ est linéaire et injective pour prouver que ϕ est un isomorphisme entre E et \mathbb{K}^n . ϕ est linéaire par linéarité de chaque application φ . Soit $x \in \operatorname{Ker}(\phi)$. $\phi(x) = (0, ..., 0)$, c'est-à-dire $\forall i \in [1, n]$, $\varphi_i(x) = 0$. Soit alors $\varphi \in E^*$.

$$\text{Comme } (\varphi_1, \ldots, \varphi_n) \text{ est une base de } E^*, \ \exists (\alpha_1, \ldots, \alpha_n) \in \mathbb{K}^n \text{ tel que } \varphi = \sum_{i=0}^n \alpha_i \varphi_i. \ \text{Alors } \varphi(x) = \sum_{i=0}^n \alpha_i \varphi_i(x) = 0.$$

D'après le lemme, x=0, ainsi ϕ^{-1} est un isomorphisme de \mathbb{K}^n dans E.

Soit $(\varepsilon_1, ..., \varepsilon_n)$ la base canonique de \mathbb{K}^n . Notons $\forall j \in [1, n]$, $e_j = \phi^{-1}(\varepsilon_j)$. Montrons que $\mathcal{B} = (e_1, ..., e_n)$ est une base de E, dont la duale est $(\varphi_1, ..., \varphi_n)$.

Par construction, \mathcal{B} est l'image par ϕ^{-1} d'une base de \mathbb{K}^n , or ϕ^{-1} est un isomorphisme. Donc \mathcal{B} est une base de E. Par définition, $\forall j \in \llbracket 1, n \rrbracket$, $\phi(e_j) = \varepsilon_i$, et $\phi(e_j) = (\varphi_1(e_j), \dots, \varphi_n(e_j))$, donc $\forall i \in \llbracket 1, n \rrbracket$, $\varphi_i(e_j) = \delta_{i,j}$.

Par unicité de la base de E^* vérifiant les formules de Kronecker, $(\varphi_1, ..., \varphi_n)$ est la base duale de \mathcal{B} .

Considérons \mathcal{B}' une autre base de E dont la duale est $(\varphi_1,\ldots,\varphi_n)$. Alors $\forall (i,j) \in \llbracket 1,n \rrbracket^2, \ \varphi_i(e_j{}') = \delta_{i,j},$ c'est-à-dire $\forall j \in \llbracket 1,n \rrbracket, \ \phi(e_j{}') = \varepsilon_j.$ Donc $\forall j \in \llbracket 1,n \rrbracket, \ e_j{}' = \phi^{-1}(\varepsilon_j) = e_j.$

Remarque :

Pour obtenir la base antéduale d'une base $(\varphi_1, \dots, \varphi_n)$ de E^* , on utilise de formules de Kronecker, c'est-à-dire que $\forall j \in [\![1,n]\!]$, on cherche $e_j \in E$ tel que $\forall i \in [\![1,n]\!]$, $\varphi_i(e_j) = \delta_{i,j}$.

Exemple:

$$E = \mathbb{K}_n[X]$$
. Soit $a \in \mathbb{K}$. On pose $\forall i \in [0, n]$, $\varphi_i(X) = \frac{P^{(i)}(X)}{i!}$. Alors $(\varphi_0, ..., \varphi_n)$ est une base de E^* dont l'antéduale est $(P_0, ..., P_n)$, où $P_k(X) = (X - a)^k$, $\forall k \in [0, n]$.

Exemple:

$$E = \mathbb{K}_n[X]$$
. Soit $(a_0, \dots, a_n) \in \mathbb{K}^{n+1}$ tel que $\forall (i, j) \in [1, n]^2$, $i \neq j \Rightarrow a_i \neq a_j$.

On pose $\forall i \in [0, n]$, $\varphi_i : P \in E \mapsto P(a_i)$. Alors $(\varphi_0, ..., \varphi_n)$ est une base de E^* dont l'antéduale est la base de Lagrange associée à $(a_0, ..., a_n)$.

Exemple:

 $E = \mathbb{R}_3[X]. \text{ Soit } P(X) = aX^2 + bX + c. \text{ On pose } \varphi_1(P) = b + a, \quad \varphi_2(P) = c + a, \quad \varphi_3(P) = c + b, \text{ formes linéaires de } E.$ Soit $(\alpha_1, \alpha_2, \alpha_3) \in \mathbb{R}^3$ tel que $\alpha_1 \varphi_1 + \alpha_2 \varphi_2 + \alpha_3 \varphi_3 = 0$. $\forall i \in \llbracket 0, 2 \rrbracket, \quad \alpha_1 \varphi_1(X^k) + \alpha_2 \varphi_2(X^k) + \alpha_3 \varphi_3(X^k) = 0$.

Ainsi $\alpha_2 + \alpha_3 = 0$, $\alpha_1 + \alpha_3 = 0$, $\alpha_1 + \alpha_2 = 0$: on obtient $\alpha_1 = \alpha_2 = \alpha_3 = 0$, donc $(\varphi_1, \varphi_2, \varphi_3)$ est une base de E^* .

Recherche de l'antéduale (P_1, P_2, P_3) : On cherche d'abord $P_1(X) = aX^2 + bX + c$ tel que $\varphi_1(P_1) = 1$, $\varphi_2(P_1) = 0$,

$$\text{et } \varphi_3(P_1) = 0. \quad \begin{cases} b + a = 1 \\ c + a = 0 \\ c + b = 0 \end{cases} \Leftrightarrow \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} c \\ b \\ a \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \Leftrightarrow \begin{pmatrix} c \\ b \\ a \end{pmatrix} = A^{-1} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \text{ avec } A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}.$$

Cela revient donc à utiliser la première colonne de A^{-1} pour avoir les coordonnées de P_1 .

$$\text{Or} \;,\;\; A^{-1} = \frac{1}{2} \begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix} \quad \text{Ainsi} \;\; P_1(X) = \frac{1}{2} (X^2 + 1 - 1). \;\; \text{De même} \;, \;\; \text{pour} \;\; P_2, \;\; \text{on utilise la deuxième colonne} \\ \text{de } A^{-1}, \;\; \text{et la troisième pour} \;\; P_3 \;\; : \;\; P_2(X) = \frac{1}{2} (X^2 - X + 1), \;\; \text{et } \; P_3(X) = \frac{1}{2} (-X^2 + X + 1).$$